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1 Introduction

The amount of videos being recorded is increasing substantially. Roughly 50% of people in the world own and use
smartphones daily!, most of which come equipped with cameras capable of recording videos. Over 500 hours of video
are uploaded to the website YouTube every minute?. Naturally, more than two decades of research has delved into
building software to search within videos for specific content. This concept of capturing, storing, and navigating video
content was proposed by Low and Jain[8] as one of the three grand challenges in multimedia computing. The video
queries specifically can be classified into 3 categories of search[9]:

1) Textual Keyword (searching by keyword query for manually annotated video segments with matching text)

2) Visual Example (searching by image or sketch for visually "similar" video segments)

3) Concept (searching by semantic concept, commonly generated by machine learning, for related video segments).

Videos are sequences of images with timestamps of when those images are recorded. Images are made up of a
two-dimensional (2D) array of pixels, also known as a single frame, and each pixel is commonly described by 3 intensities
of red, green, and blue values. Much of the existing literature on searching for content in video focuses on first taking
in such 2D videos as input and then extracting higher-level concepts from this data via various post-hoc computer
vision techniques. Examples of common applications include classification, tracking, and 3D reconstruction.

At the same time, augmented reality (AR) applications have begun to take a hold in the smartphone market.
Smartphones provide a type of AR experience commonly coined as video see-through AR, which superimposes virtual
information upon a live video view of the real scene. The virtual objects are registered to the real scene by tracking the
phone camera’s physical motions and positioning a calibrated virtual camera that renders the virtual objects in the
correct location. To do so, AR-capable smartphones combine video data with other types of sensor data to track the 3D
position of the camera, scene, and sometimes scene geometry, in real-time.

Depth sensors are a class of devices capable of producing 3D point clouds of the local environment. This technology
comes in many forms, such as stereo camera pairs®, infrared projection?, time of flight®, and light detection and
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ranging (LIDAR). Recently, LIDAR has been added to newer smartphones® to enable AR tracking at even higher fidelity.
Smartphones equipped with LIDAR are able to produce a 3D mesh of the environment that approximates the local
space’s size and shape. This 3D reconstruction of the environment is produced by feeding video and sensor information
on the AR device into a Simultaneous Localization and Mapping algorithm (SLAM)[10].

With all this in mind, we propose that by saving AR tracking information and grounding each video frame to a
point in space, we can enable new ways of searching for content in videos. Spatial information can be saved every
time a frame of video is recorded. This spatial information includes the camera’s intrinsic (focal length, principal point,
image size) and extrinsic (world position, rotation) parameters, as well as a reconstructed 3D model of the environment.
Concurrently, temporal information comes in the form of video frames that are associated with time stamps. We call
the artifact of joining recorded AR information and associated video frames an "AR-Video". We can develop interactions
on AR-Videos to perform spatio-temporal queries across the entire length of one or more videos recorded in a given
space. The final 3D model of the environment can also be used to align two or more recorded videos in space using the
Iterative Closest Point algorithm [11], allowing us to process video taken from multiple points in time and space. We
built an interactive system called AR-Video Query to explore the utility and applicability of performing spatio-temporal
queries on videos with recorded AR tracking.

Why would someone want to make spatio-temporal queries? We will consider two possible applications.

First, we consider searching for information in sousveillance applications. "Sousveillance" shares common ground
with "surveillance” in that videos are being recorded, but differs in that individuals, as opposed to governments, own
and control the video cameras. The sousveillance model embodies a bottom-up approach where citizens can shed light
on abuses of power by figures of authority ’. In recent history, there have been many examples of social events such
as police brutality and mass violence which have been captured in this way via multiple users’ smartphones. Often,
these events tend to be recorded over a series of short videos from many different perspectives. As a result, if one
wanted to find a single point in space where a particular event might be occurring, one would find it quite difficult and
time-consuming to do so across the entire set of video recordings of that event. We hypothesize that a spatio-temporal
query against a 3D model of the environment in the event of interest would allow users to easily pinpoint that location
within that set of videos.

Second, it is fairly common for people training convolutional neural networks to need to generate sets of training
examples. This training data comes in the form of images with the areas of interest outlined with a bounding box. It is
common to need to generate a set of training data that has a large variety of examples. A machine learning practitioner
could use a spatio-temporal query to efficiently generate a set of training data across a whole sequence of videos.

A spatio-temporal query can be performed through either a spatial or temporal interaction. Spatial interactions can
produce temporal results, and temporal interactions can produce temporal and spatial results. This project outlines one
such spatial interaction, in which the user is able to draw a paint stroke over the objects that they are interested in

querying for.

2 Related Work

We draw from related works in the fields of video querying, sousveillance, and spatial interaction techniques.

®https://developer.apple.com/augmented-reality/arkit/
"https://en.reset.org/knowledge/sourveillance- 11152016
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Fig. 1. Conceptual overview of the AR-Video Query data process. All data is extract from the iOS ARKit APl using a custom video
recording application.

Querying Videos

Video files can contain gigabytes of information and searching through this information has been a challenge in
multimedia systems for decades. In 2005, the ACM SIGMM group met and outlined a set of future directions for
multimedia research [8]. In this report they list 3 grand challenges in multimedia, the third of which is "... to make
capturing, storing, finding, and using digital media an everyday occurrence in our computing environment". Our system
contributes to this problem in that we are attempting to allow users to search across many videos with new interaction
techniques. Other attempts at solving this problem include doing content analysis on chunks of video and providing
summaries for a coarse search through video [9]. Our project differs in that it provides a way for users to interact
directly with the subject that they wish to search for. There have been other direct manipulation techniques applied to
searching for content in videos, as shown by Dragicevic et al[3]. This work allows users to find alternate locations for
objects of interest by drawing a trajectory that the object follows in the video. SceneSkim[7] shows that structured
query of video can be greatly enhanced if additional metadata is present, such as synchronized script text along with
movies and closed captions. Video lens[6] shows that faceted search across a video is possible with linked numerical
metadata. Our approach differs from both of these (but is not exclusive from) in that we associate videos with spatial

data.

Sousveillance

Sousvellance is defined by Mann, Nolan and Wellman[5] "as both a conceptual framework for and as a performance of

various techniques of self-empowerment in opposition to modern technologies of surveillance". Their work provides
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examples of five ways in which sousveillance is structured in modern society. Sousveillance devices such as the Microsoft
SenseCam have been studied to determine what meaningful ways sousveillance can be used to improve daily lives. The
Rashomon Project[1] is an interface for synchronizing multiple sousveillance streams for easier browser. Our project is
similar in that we also allow users to navigate multiple synchronized streams, but we provide interaction techniques for

users to be able to search for information in such an interface.

Interaction Techniques

We take inspiration for our interaction techniques from a number of previous projects. Distancecut[2] describes an
algorithm that allows users to scribble roughly over particular objects in images, and will automatically segment those
objects from the rest of the image. We implement a similar, though more coarse, type of scribble interaction. SpaceTop([4]
joins 2D and 3D spatial interactions in a single system. We take inspiration from many of the types of interactions
demonstrated in this work, although we differ in that our system has users interaction with a computer screen as

opposed to a touch surface.

3 System Design

We have created AR-Video Query with the goal of enabling users to spatio-temporally explore multiple streams of
video data captured within the same physical environment. In order to achieve this, we have designed a comprehensive

system pipeline.

3.1 Input Capture

The pipeline begins with the collection of all of the necessary channels of input data for our system. We seek to gather
data captured by the RGB camera, inertial measurement unit (IMU), and Light Detection and Ranging (LiDAR) scanner
on a user’s smartphone and feed these data channels into a Simultaneous Localization and Mapping (SLAM) algorithm.
From this process, we can extract and compute 3 types of output data: recorded video in mp4 format, 3D mesh of the

environment in obj format, and camera extrinsic and intrinsic parameters in JSON text format.

3.2 Query User Application

For the user-facing application, our interface enables a multitude of user queries, leveraging the data streams we have
collected and synchronized. The query process can be broken down into a closed-loop system of 3 states: spatial,
temporal, and results. Each of these states are simultaneously visualized, and they each offer various avenues for

interacting with the other states.

3.2.1 Spatial
For the spatial interface, we first focus on empowering a user to freely view and navigate around the generated
surrounding 3D environment. Since the 3D environment mesh itself is made up of detailed 3D shapes that lack any
texture, we project the rendered view from the current video frames from each video camera on to the 3D mesh. This
visualization design proves fruitful in reflecting real-time video frames during temporal query interactions, which will
be described in further detail in the temporal state section.

We also design an interaction tool that allows a user to focus on points or sections of the 3D mesh that they are
interested in querying. These query interactions can be conducted either within the 3D mesh space or on top of the

2D video visualizations, which then flow naturally into being reflected in the other two states (temporal and results).
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Fig. 2. AR-Video Query interface. Top left shows the spatial view, top right show the results view, and bottom shows the temporal
timeline view. Callout A shows the camera position rendered in the spatial view. Callout B shows an example paint stroke query.

Additionally, by enabling a user to select a subset of such regions of interest, a user can define and capture spatial

relationships between different parts of the environment such as objects, people, walls, etc.

3.2.2 Temporal
We aim to provide a user a clear understanding of where each frame of each video is situated in time relative to the
totality of the synchronized videos. To that end, we create a temporal interface consisting of timelines for each video
which are synchronized and then stacked on top of each other into a single coherent timeline.

When the spatial query interaction is invoked, the temporal interface seeks to represent the salient times and time
intervals in which the queried parts of the 3D mesh are present in camera view.

Meanwhile, we also enable the standard user functions of playing, pausing, and scrubbing through different time
frames in the overall timeline. These effectively serve as temporal queries that again flow into visualizations in the
other two states (spatial and results). Part of our design of these UI components was inspired by Adobe Premiere Pro’s

interface.

3.2.3 Results

In the results section of our interface, we strive to give a user a 2D results panel for understanding the outputs of spatial
and temporal queries. The panel will, in certain cases, fill up with some number of videos concurrently to reflect the
query or current time. This visual format proves convenient for a user to keep track of the videos playing all at once.

In other situations, the panel will reflect a mosaic of individual thumbnail images with certain time frames within
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Fig. 3. Example interaction in the spatial interface. First the user scribbles a line over the object of interest. A bounding hull is
computed for the paint stroke. Finally, the bounding hull is checked for visibility against all camera view frustums for all frames of
video.

intervals that a user is focusing on. This alternate visualization design serves as a helpful visual preview tool for a user

that summarizes what is occurring in certain spatial regions or time intervals.

4 System Implementation
4.1 Input Capture

The system pipeline implementation starts with a basic Xcode project written in Swift that interfaces with an i0OS
device. It then extracts and computes the recorded video (mp4), 3D mesh (obj), and camera parameters (JSON). Any
i0S device can be used to capture the video data with its camera and the camera localization data with Apple’s ARKit.
Meanwhile, although older iOS device generations can still utilize ARKit’s basic plane detection, only the iPhone 12 Pro,
iPhone 12 Pro Max, and the iPad Pro have the new LiDAR (Light Detection and Ranging) sensor to make full use of
ARKIt 4’s depth API and SLAM (Simultaneous Localization and Mapping) for generating the full 3D mesh data.

4.2 Query User Application

Spatial
For user navigation, we make use of Unity’s fly-through mode to lend a user maximum flexibility in flying around the
3D mesh environment with 6DOF (Degrees of Freedom). The specific keyboard-mouse instructions consist of: right
click + drag for rotation, right click + WASD for forward/left/back/right, and right click + QZ for up/down.
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Fig. 4. Example showing how result intervals are displayed in the timeline view. Intervals represent the range of frames for which a
query object is visible. These intervals are then colored on the video timelines to signify their location in the video.

Within this 3D mesh environment, we implement the rendering of real-time textures of the parts of the mesh in
view of the video cameras via a projection shader. The shader renders a 3D frustum out from the video camera, checks
when it clips any areas of the mesh, and changes the texture of the clipped areas to be that of the video frame output.

To enable the user spatial query interaction, we implemented a "painting” tool for the user to paint areas of interest in
the environment with their mouse’s left click + drag. For this paint interaction, we provide two modes - line rendering
and convex hull. In line rendering mode, our paint tool renders small 3D spheres that trace the path of the user’s
mouse in 3D space. This is represented by interaction A in Figure 6, where a zigzag is painted on the table, which is
then reflected in the timeline with all blue intervals containing video frames with that zigzag visible. In convex hull
mode, our paint tool again renders the same collection of small 3D spheres, but then computes the 3D convex hull that
surrounds those points and overlays this generated shape onto the scene. The resulting line or convex hull are referred
to as a query object.

After painting a query object, we use it to perform a query on all video frames.

For every frame of video, we compute a world space view frustum for the space that the video can see. The individual
points in the query object can then be checked against this frustum using a series of dot products. This reduced the
query time to about 100ms for a 1.5 minute long video.

Results of a spatial query are in the form of a sequence of intervals for each video. These intervals represent the

frames of video in which the query object was visible to the camera

Temporal

For the temporal interface, we created a timeline section of a fixed width that contains all of the video timelines that have
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Fig. 5. Example of how the results are displayed in the Results View. Intervals are sampled uniformly, then images at those sample
times are extract and placed together as a strip of thumbnails. One thumbnail strip per results interval.

been time-synchronized. These individual video timelines are implemented with color-coded strips of widths relative to
their length. We decided on this implementation to give a user a strong visual sense of the videos’ relationships to each
other without the friction of having to scroll around an interface to uncover obscured sections.

To represent the results of queries from the spatial state, the temporal state portrays small icons and strips of a
different color that are overlaid on top of the timeline strips at the result intervals.

We create icons and buttons to enable query interactions within this timeline section. The play, pause, and frame
forward buttons can be left-clicked with a mouse to execute those functions. A user can also left-click and drag the
timeline slider around to seek to a specific time that they are interested in. This is represented by interaction B in Figure
6, where clicking on part of the timeline translates to moving the camera position in the spatial view, which therein

changes which part of the 3D mesh is textured.

Results
The results view allows us to render out the results of the query as a strip of thumbnail images from the result intervals.
Thumbnails are sampled uniformly across each interval, and an image is taken from the video at each sample point to
provide a visual indicator of all of the points in space and time in which the query object is visible. These sampling
transitions are represented by transitions 1 and 2 in Figure 6, where the 2nd interval is sampled uniformly 7 times
and the 5th thumbnail reflects the 5th sampled time. The thumbnails in these strips can be clicked to synchronize the
camera to the corresponding point in space and time to facilitate easier searching and contextualization of results. This
is represented by interaction C in Figure 6, where clicking on the 5th thumbnail in the 2nd row brings the user back to

the correct point in space and time.
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Fig. 6. AR-Video Query interaction flow diagram. Interactions in the different views affect other views to allow for interactive
exploration of the results. Interaction A: Spatial paint query whose results are reflected by the light blue intervals of video timelines
in the temporal state. Interaction B: Temporal timeline query whose results are reflected by the video camera position and texturing
in the spatial state. Interaction C: Results thumbnail query whose results are reflected by the video camera’s position in the spatial
state. Transition 1: Demonstrates the transition from valid intervals to uniformly sampled times. Transition 2: Demonstrates the
transition from uniformly sampled times to visual thumbnails of those video frames
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5 Discussion

In implementing these interactions, we are able to pilot what the user’s experience would feel like when trying to
perform video queries. A number of improvements were identified.

For the spatial interface, it would be very useful to be able to specify logical operations on multiple paint strokes.
Currently the system only handles the OR operation (any of the paint strokes can be in view), meaning that all paint
strokes are included in the query object. We identified a few cases where it would be very useful to be able to AND (all
paint strokes must be in view) or XOR (any single paint stroke is in view) to be able to generate a more complex set of
outputs.

When query objects enter the camera’s view, there is often a bouncing effect that happens due to the noise in the AR
tracking information, as well as any shake due to the fact that the camera is hand held. This manifests in the temporal
view as a sequence of short intervals where the object is computed as being in view and then out of view. We believe a
simple debounce algorithm would suffice to solve this issue.

For the results view, while the thumbnail strips do provide a good representation of the results output, we found that
it would be nice to also play the video represented by the result intervals. We imagine this working by allowing the
user to play the timeline, but if a result interval is present, to only play the frames from those intervals. The videos will

be rendered in the results area as a video player for each loaded video.

6 Evaluation Plan

When the work from the discussion section is complete, we believe the interface will be at a point that we can run a

user study. This section describes our plan for such a study.

Study Groups

As we are comparing this new interface to existing solutions, we will test 3 groups in our study. The first group will
attempt to complete each task by looking at the recorded videos directly. We could either provide this as a folder full
of files, or in an interface that has the videos loaded so they all could be played at once. Our second group will use a
purely time synchronized approach described in the Rashomon project. The third group will use the AR-Video Query

software described in this paper.

Tasks

We need to consider what types of benefits this software provides when thinking about task design. The main benefit
over something that is purely time synchronized is the fact that we also have spatial synchronization. Therefore, the
types of tasks we will ask the user will be of the form "find when this object enters a given space" or "find all intervals
of video in which this action occurs". Additionally, we hypothesize that with some combination of logical operations
added to queries, we will also be able to generate diverse sets of training data for training neural networks. Another

task to test this would be to ask the users to gather a specific set of data to train a convolutional neural network.

Resulting Data

Performance of each condition can be measured in a number of ways. We can record the amount of time it takes the
user to complete their task, as well as record the number of actions the user has to take to perform the action. We would

also ask users to complete a questionnaire aimed to determine which interfaces they found confusing, attempting to
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determine if spatio-temporal queries are something that users can understand easily or if it is more challenging than

the other approaches.

7 Conclusion

Leveraging the historic emergence of video querying and mobile AR tracking capabilities, we created AR-Video Query to
enable spatio-temporal queries on data captured by a user’s smartphone. The software has strong potential applications
in augmenting sousvellance tools and collecting computer vision network training data. We chose to design a system
pipeline that would empower a user to capture, query, interact, and visualize multiple streams of data. We successfully
implemented such interfaces with fluid interactions among the spatial, temporal, and results states. Lastly, we plan to
conduct user studies to quantitatively and qualitatively demonstrate the benefits of our software system; this would
involve reaching out to certain groups of people and asking them to take part as a volunteer in our carefully planned

evaluation study.
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