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ABSTRACT

Spatial computing experiences are physically constrained by the ge-
ometry and semantics of the local user environment. This limitation
is elevated in remote multi-user interaction scenarios, where finding
a common virtual ground physically accessible for all participants
becomes challenging. Locating a common accessible virtual ground
is difficult for the users themselves, particularly if they are not aware
of the spatial properties of other participants. In this paper, we in-
troduce a framework to generate an optimal mutual virtual space
for a multi-user interaction setting where remote users’ room spaces
can have different layout and sizes. The framework further recom-
mends movement of surrounding furniture objects that expand the
size of the mutual space with minimal physical effort. Finally, we
demonstrate the performance of our solution on real-world datasets
and also a real HoloLens application. Results show the proposed
algorithm can effectively discover optimal shareable space for multi-
user virtual interaction and hence facilitate remote spatial computing
communication in various collaborative workflows.

Index Terms: Computing methodologies—Computer graphics—
Graphics systems and interfaces—Mixed / augmented real-
ity; Human-centered computing—Human computer interac-
tion —Interaction paradigms—Collaborative interaction; Ap-
plied computing—Decision analysis—Multi-criterion optimiza-
tion and decision-making; Theory of computation—Mathematical
optimization—Optimization with randomized search heuristics—
Evolutionary algorithms

1 INTRODUCTION

The emerging fields of augmented reality (AR) and virtual reality
(VR) have introduced a large number of exciting applications in tele-
communication, immersive collaboration, and social media where
multiple users can share a virtual environment. While much work
has been done on 3D capturing methods, real-life avatar modeling,
and virtual social platforms, one key challenge in AR/VR immersion
is the scene understanding of the users’ surrounding spaces and the
question of how to optimally utilize them for immersive tasks.

More specifically, acquiring an accessible 3D workspace is a
prerequisite for a virtual or augmented immersion experience. Fur-
thermore, the augmentation of the virtual data in the physical space
must be compatible with the contextual properties of the physical
space, such as a floor that is standable, a chair that is sittable, and a
wall that is also a physical barrier of virtual interactions. For many
6 degrees-of-freedom (DOF) VR applications, the user will often
be asked to manually initiate a block of free space where the VR
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immersion can be assumed to be safe. Inferencing the above con-
textual information for both AR and VR can be readily done using
several well-established 3D modeling algorithms in computer vision.
Current AR devices, such as the HoloLens or MagicLeap, integrate
such algorithms to estimate the layout of the space, including floors,
walls, and ceilings, and typical furniture objects such as tables and
chairs. In this paper, we assume such contextual information of
individual spaces to be available via either a manual or algorithmic
process.

However, in scenarios where an immersive experience involves
multiple users, understanding of spatial constraints is elevated to
that of all involved users. Since different users may participate in the
immersive experience from their own spaces, which can hold very
contrasting contextual properties, a consensus must be established
to identify a mutual space that respects the spatial constraints of
all the participants. Yet, having users manually identify such a
mutual space would be imprecise and labor intensive, especially
when considering the fact that it would be difficult for a user to
be aware of the contextual properties of the other users’ spaces.
Without more effective and efficient solutions, the establishment
of a contextual mutual space will be a bottleneck for multi-user
immersion experiences.

Motivated by this challenge, we present in this paper a novel
method to optimize contextual mutual spaces in a multi-user immer-
sion setting. Our method relies on existing semantic scene maps
to identify shareable functional spaces, and is general enough to
optimize contextual mutual spaces even when the users’ spaces have
very different layouts and sizes (see results in Figure 6). For il-
lustration purposes, we will use standable and sittable as the two
exemplary contextual functions to develop our method, and the pro-
posed solution is compatible with other contextual functions that
can be modeled by the same mathematical framework. The method
formulates an optimization problem to seek the maximal mutual
spaces. Furthermore, if one can assume the users have the freedom
to rearrange furniture objects on the floor, we introduce a more deli-
cate optimization process to further increase the mutual space’s size
while balancing the users’ efforts to physically move the objects as
another constraint. To effectively solve the above two problems, we
propose to use a genetic algorithmic approach. Clearly, we believe
other comparable algorithms that optimize these NP-Hard problems
are equally effective. Nevertheless, our results validate a new ap-
proach capable of automatically recommending contextual mutual
space to multiple participants of virtual immersion experiences in
AR/VR applications.

We believe our proposed framework can play a role in facilitating
remote workplace practices and virtual collaborations by decreasing
the spatial requirements for tele-presence systems. Instead of set-
ting up large open spaces required for such workflows, our system
would allow users to join from their personal spaces, with minimum
modifications to their surrounding environment. Physical and vir-
tual re-arrangements would be optimized based on the number of
participant and their local environments. In AR experiences, the
topological relationship and line of sight between all participants
would be maintained without any conflicts between remote users
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Figure 1: Abstract illustration of our proposed framework a) initial
settings with different spatial restrictions b) semantic segmentation
defining standable (yellow boundaries) and sittable (orange bound-
aries) areas c) search for mutual sittable space (this step can be
before, after or simultaneous with object repositioning) d) virtual ar-
rangement of avatars with deterministic line of sight of all participants.

and local physical obstacles, while in VR, our system can recom-
mend spatial modifications and provide the required interaction area
between multiple users.

2 RELATED WORK

Immersive AR/VR systems have been widely explored for remote
tele-presence applications, providing real-time capture, transmission
and display between participants of the platform [5, 19, 34]. Using
an array of cameras [33, 66, 68] or depth sensors monitoring the
capture space [26,45,47,57], holographic replicas or avatars [41,71]
of the virtual participants are projected in pre-defined local spaces.
Such projections have been extensively developed using situated
autostereo [47, 49], volumetric [25], lightfield [3], cylindrical [30],
and holographic [8] displays. However, participants of such systems
are mainly stationed in predefined spaces [7, 44, 72, 76] to avoid
any geometrical conflicts with surrounding features in the projected
space. Such approach limits free-form motion of the participants
within each other’s location, an important factor for achieving co-
located presence.

The importance of free-form user movement and the ability to
preserve mobility-based communication features such as walking,
gestures, and head movement have been studied greatly in the con-
text of co-located collaboration [4,12,29,42]. Another vital aspect of
sharing mutual space is described in Clark’s work as grounding [17].
Grounding in communication (or common ground) is a concept that
comprises the collection of "mutual knowledge, mutual beliefs, and
mutual assumptions" that is essential for communication between
two people. Successful grounding in communication requires parties

to coordinate both the content and process [36]. As content in spatial
computing can also involve the surrounding space itself, providing a
common virtual ground can be critical to allow all communication
features to be reflected correctly.

More recent examples have explored how tele-presence can be
conducted with less spatial constraints, allowing fluid user motion in
both ends of the communication. Works of [20] and [6] are examples
of such systems where users and their local interaction spaces are
continuously captured using a cluster of registered depth and color
cameras. However, these systems use stereoscopic projection which
limits the ability for remote and local users to access each others
space. Instead, spaces are virtually disconnected and interaction
occurs through a window from one space into the other. Meanwhile,
the Holoportation system introduced by Orts-Escolano et al. allows
bilateral tele-presence between participants where participants share
a common virtual ground [54]. Their system allows the remote user
to be rendered into the local user’s space as an avatar while the local
user appears as an avatar in the remote user’s space as well. Such an
approach is also seen in [46], where the remote and local users do
not share the same functional layout of rooms, but they are calibrated
in order to provide the required mutual virtual ground between users.

While tele-presence systems via shared spaces present novel
workflows for capturing and projecting virtual avatars, the issue
of avoiding physical and virtual conflicts within the shared spaces is
still an open challenge. Narang et al. [52] developed a system which
generates non-colliding movements for human-like agents interact-
ing with other agents or avatars in a virtual environment. Lang et
al. [35] integrate scene semantics with a Markov chain Monte Carlo
optimization method to find optimized locations for placing virtual
agents close to a single user. Such approach addresses the spatial
limitations of a single user, but not multiple constraints generated
by multiple remote user. The work of Lehment et al. [37] may be
the closest work to this paper, which proposes an automated method
to align remote environments so that they minimize discrepancies
in room obstacles and physical barriers. However, the method is
limited to two spaces and uses a brute force search to calculate
the consensus space between participants. Our method formulates
rigorous optimization problems to search and manipulate a poten-
tially unlimited number of spaces in order to find a mutual spatial
boundary.

For virtual reality environments, techniques in redirected walking
[60] also aim to resolve the possible conflicts of virtual and physical
surroundings. While the focus is mainly on providing a natural
locomotion of a local user, such techniques use subtle (redirected
without the user’s knowledge) [9, 11] or overt (detectable by the
user) [23, 56, 73] strategies to manipulate the mapping between the
user’s real and virtual translation and rotation, resulting the user
to avoid interference with edges of the usable space or physical
obstacles. Architectural manipulation of virtual spaces has also been
investigated by re-arranging virtual elements in blind-spots [63] or
implementing self-overlapping [64] and flexible virtual spaces [69].
However, redirected walking techniques may introduce simulator
sickness [53], interfere with spatial memory [73], and lead to higher
cognitive load than real world locomotion [10]. Furthermore, while
such strategies can be applied in VR environments, they cannot
generally apply for AR experiences due to the see-through nature
of AR. Even so, the ability to efficiently manipulate the real-world
surroundings introduced by our system would provide more spatial
freedom, especially in remote mulit-user scenarios, before applying
multi-user redirecting walking techniques.

Part of our proposed system intends to determine an optimal ar-
rangement of discrete spatial elements within a room. Such practice
is often referred to as floorplanning [18]. Automated floorplanning
methodologies have been widely investigated in architectural space
layouts, construction [16, 55, 67], electronic design [14, 22, 50], and
industrial operation research [1]. Floorplanning aims to achieve



a defined functional goal by efficiently generating and evaluating
possible spatial combinations while addressing the geometrical and
topological constraints of the spatial elements [24]. In electronic
physical design floorplanning, proposed methodologies mostly aim
at optimizing chip area and wirelengths to reduce interconnections
and improve timing [27]. In construction site layout and planning,
optimizing the interaction between facilities, such as total inter-
facility transportation costs and frequency of inter-facility trips can
also be implemented as objective functions [55]. In our proposed
framework, we similarly integrate an objective function whose goal
is to minimize the amount of effort required to move surrounding
furniture while maximizing the area of the mutual virtual ground
among all participants.

In floorplanning, various representation methods of spatial ar-
rangements are coupled with optimization engines to efficiently
search through all possible combinations of spatial elements. Floor-
planning representations are generally divided into two main cat-
egories: slicing and non-slicing representations [70]. In slicing
methodologies, the floor plan is recursively bisected until each
part consists of a single module [74]. Non-slicing representation
are utilized for more general use cases where no recursive bisec-
tion of a certain area takes place [21, 39, 43]. Multiple studies
have integrated these representations with various optimization al-
gorithms such as Simulated Annealing (SA) [31, 32, 74], Genetic
Algorithms (GA) [22, 38, 51, 61, 75] and Particle Swarm Optimiza-
tion (PSO) [15, 28, 48, 62, 65]. More recently, by applying learning
based algorithms, hybrid neural networks[7] and annealed neural
networks have been used to identify optimal site layout and solve
construction site-level problems.[8]

3 METHODOLOGY

Our solution consists of the following four steps: (i) Semantic seg-
mentation of surrounding environments; (ii) Topological scene graph
generation; (iii) Mutual space identification; (iv) Optionally, ma-
nipulation of ground objects to further maximize the mutual space.
In this section, we will elaborate on the details of the four steps.
To start, we will define the terminologies and notations used in the
paper.

Given a closed 3D room space in R3, one can project its enclosure,
i.e., floors, ceilings, and walls, via an orthographic projection to form
a 2D projection, which is commonly known as the floor plan of the
space. If we assign the (x,y) coordinates on the floor-plan plane and
the z coordinate perpendicular to the floor-plan plane, simplifying
our optimization problems on to the (x,y) plane significantly reduces
the complexity of our algorithms. It also implies an assumption that
there is no overlap between two objects on the (x,y) plane but with
different z values. Nevertheless, we believe such simplification is
reasonable for analyzing the majority of room structures and thus
does not compromise the generality of our analysis provided herein.

Hence, we define for each user i their own room space expressed
as a 2D floor plan as Ri. Each k-th object (e.g., furniture) in Ri is
denoted as Oi,k.The collection of all ni objects in Ri is denoted as
Oi = {Oi,1,Oi,2, ...Oi,ni}. Ōi,k represents the boundary of the object
Oi,k. Similarly, R̄i represents the boundary of the room Ri. Finally,
we define the area function as K(O).

3.1 Semantic Segmentation

Given the measurement of the surrounding physical environments as
large sets of point cloud data, one can take advantage of the semantic
segmentation methods widely investigated in computer vision litera-
ture [2, 40, 58] to segment their spatial boundaries and obtain their
geometric properties, such as dimensions, position and orientation,
object classification, functional shapes, and their weights. In doing
so, we can convert the 3D point cloud data to labeled objects Oi,k
with a bounding box as Ōi,k.

Figure 2: Comparison between available (a) standing only and (b)
standing and sitting area in rooms.

Additionally, in this paper we exclude lightweight objects (such
as pillows, alarm clocks, laptops, etc.) positioned on larger furniture.
This is to simplify our calculations in the next steps as we assume
these lightweight objects can be easily moved by the users and do not
need to be considered in the optimization criteria. Such classification
is dependent on the output labeled object categories above.

In the experiment section below, since the implementation of a
computer vision algorithm for semantic segmentation is not the main
focus of this paper, we will directly integrate a modified version of
Matterport 3D [13] object classifier in our system. This module can
be replaced with any other robust semantic segmentation algorithms,
as long as they provide bounding box coordinates for each object
category. In a companion Matterport 3D [13] dataset, out of 1,659
unique text labels, we classify 134 of the labels as lightweight objects
and filter their corresponding bounding box from our workflow.

Figure 2(a) illustrates the result of semantic segmentation of two
room spaces projected onto the (x,y)-plane.

3.2 Topological Scene Graph
After identifying the bounding box, orientation, and category type of
each object in the scene Ri, a topological graph is readily generated
that describes the relationship and constraints of the objects between
one each other within Ri. This step will allow us to identify usable
spatial functions such as standing in virtual immersion, located be-
tween the objects. We categorize this type of functions as standalone
spatial functions, and their spaces are called standalone spaces.

A topological scene graph will also allow us to identify other
spatial functions on the objects themselves such as sitting on a chair
and working on a table. But note that such functions as sitting or
working are also constrained by the distances between the object that
performs the function and its adjacent other objects. For example, a
side of the table can not be utilized for working purposes if that side
is adjacent to other furniture or building elements (such as walls,



doors, etc.). We categorize this type of functions as auxiliary spatial
functions, and their spaces are called auxiliary spaces.

In this paper, we will use two spatial functions standable and sit-
table as an example to demonstrate how to integrate both standalone
spatial functions and auxiliary spatial functions in the optimization
of contextual mutual spaces for mutli-user interaction in AR/VR.

Finally, we emphasize that standalone spaces and auxiliary spaces
are not mutually exclusive. For example, in this paper, we will
classify that a standable space can be assumed to be sittable as well.
However, the vice versa may not be true. For example, a portion of
a sittable space involves a part of a bed object, which we will not
assume to be standable. Such contextual constraints can be highly
customizable based on the content of the AR/VR application. But
the framework that we are introducing in this paper is general enough
to accommodate other contextual interpretations of the standalone
spatial functions and auxiliary spatial functions.

In our implementation, we use a doubly-linked data structure to
construct the graph. For each side face of an object’s bounding box
we define the closest adjacent objects to the face and calculate the
distance between the object and the specified face. This information
would be stored at the object level, where topological distances and
constraints are referenced using pointers.

Mathematically, for each object Oi,k, we define the function
δXmax(Oi,k) as the shortest distance between the points in Oi,k that
have the maximal x value and the other objects including R̄i. Simi-
larly, we define the functions δXmin(·), δYmax(·), and δYmin(·).

3.3 Mutual Space Identification
In this step, we will identify the geometrical boundaries of available
spaces in each room and then align the calculated boundaries of all
rooms to achieve maximum consensus on mutual spaces.

First, using the geometrical and topological properties extracted
in previous steps, we are ready to calculate available spaces in each
room based on two categories, namely, the standalone spaces and
auxiliary spaces. Specifically, we will formulate the calculation of
the two most typical spatial functions as examples again, namely,
standable and sittable.

3.3.1 Standable Spaces
Standing spaces consist of the volume of the room in which no
object located within a human user’s height range is present. In such
spaces, user movement can be performed freely without any risk of
colliding with an object in the surrounding physical environment.
Activities such as intense gaming or performative arts can be safely
executed within these boundaries. Such spaces are also suitable for
virtual reality experiences, where users may not be aware of the
physical surroundings.

We calculate the available standing space (S) for room Ri simply
as follows:

Si = Ri−
ni⋃

k=1

Oi,k. (1)

3.3.2 Sittable Spaces
The calculation of maximal sittable spaces is more involved than
that of the standable spaces above. As we mentioned before, sittable
spaces normally extend the standable spaces by adding areas where
humans are able to sit on. Furniture types such as sofas, chairs, and
beds include sitting areas that can extend usable spaces of a room
for social functions such as general meetings, design reviews, and
conference calls.

To start, we define a sittable threshold ε(Oi,k) to calculate the
sittable area within the bounding box of the object Oi,k. In other
words, ε(Oi,k) is the maximum distance inward from an edge of
the object’s bounding box that can be comfortably sit on. We use

Figure 3: Standable (green), non-standable (red) and sittable spaces
(yellow) for two example scenes from the Matterport 3D dataset.

measurements from [59] to define the ε of each furniture type. If
object O is classified as non-sittable, then ε(O) = 0.

Therefore, we can first calculate the non-sittable area of an object
O as

N(O)
.
= {∀p ∈ O : B(p,ε(O))∩O = B(p,ε(O))}, (2)

where B(p,ε(O)) is a sphere in R2 centered at p and with radius
ε(O).

We note that sittable spaces do not necessarily comprise only
objects to be sit on, but rather describe an area where a sittable
object can be placed in. For example, while an individual may not
be able to comfortably sit on the top of the table, but the foot space
below the table can be considered as sittable space. Therefore, in
such context the sittable area of the room is always larger than its
standable area.

Moreover, sittable areas of each object in the room is constrained
by the topological positioning of the object. If any of the object’s
boundaries is adjacent to a non-sittable object (such as a wall, book-
shelf, etc) or does not contain enough standable area between itself
and a non-sittable object, the sittable area of the side of the face
should be excluded. For instance, if a table is positioned in the
center of a room, with no other non-sittable object around it, the
sittable area would be calculated by applying the sittable threshold
to all four sides of the table’s boundaries. However, if the table is
positioned in the corner of the room, then there will be no sittable
area accumulated for the sides that are adjacent to the wall.

To simplify our calculation, we define a surrounding boundary
threshold ρ(O) for object O, which measures the distance from any
object’s boundary point outward that allows that point to remain part
of the sittable space of the object. In other words, if the boundary
point is close to other objects or the room boundary within distance
ρ , then that point can not be sit on. C(Oi,k) defined below collects
all such points for exclusion from Oi,k in room Ri:

C(Oi,k) = {∀p ∈ Oi,k : B(p,ε(Oi,k)+ρ(Oi,k))∩ R̄i 6= /0
or B(p,ε(Oi,k)+ρ(Oi,k))∩Oi,h 6= /0,h 6= k} (3)

where /0 denotes the empty set. Therefore, the sittable space of each



object O is simply defined as

A(O) = O−N(O)∪C(O). (4)

Finally, the total sittable space A(Ri) for the room Ri is

A(Ri) =
ni⋃

k=1

A(Oi,k)+A(Si). (5)

Figure 3 illustrates two example rooms and compares their stand-
ing and sitting areas.

3.3.3 Maximizing Mutual Spaces
Now we consider an immersive experience where there are m sub-
jects and therefore m room spaces (R1,R2, · · · ,Rm), respectively.
Then, in the (x,y)-coordinates, we define a rigid-body motion in R2

as G(F,θ), where θ describes a translation and a rotation.
If we want to maximize a mutual standable space, we can ap-

ply one G(Si,θi) to each individual standable space Si for the i-th
user. The optimal rigid body motion then maximizes the area of the
interaction space:

(θ∗1 , · · · ,θ∗m) = argmaxK(
m⋂

i=1
G(Si,θi)). (6)

Then the maximal mutual standable space can be calculated as

MS(R1, · · · ,Rm) =
m⋂

i=1
G(Si,θ

∗
i ) (7)

Similarly, one can calculate the maximal mutual sittable space
MA(R1, · · · ,Rm) by substituting the rigid body motions in (7) that
maximizes their intersection area function in (6).

3.4 Furniture movement optimization
In the event where individual spaces Ri include movable furniture,
additional optimization can be considered to potentially increase
the maximal mutual spaces. Diverging from merely considering
rigid-body motions to transform just the coordinate representation of
the spaces, we consider moving furniture objects in space, which has
an additional cost of human effort. Consequently, we will formulate
this effort as part of our optimization objective.

More specifically, given a rigid-body motion G, we definite ‖G‖t
as the Euclidean distance of its translation vector. Then we define

E = w‖G‖t , (8)

where w is a given parameter that approximates the weight of each
object. Note that such weight estimate can be looked up using
architecture standards such as in [59]. Hence, if a room space Ri has
ni objects, then the total effort to re-arrange the space is

E(Ri,Θi) =
ni

∑
k=1

wk‖G(Oi,k,θi,k)‖t , (9)

where Θi = {θi,1, · · · ,θi,ni} denotes the collection of ni rigid-body
motion parameters.

Since solving for the optimal object transformation is an NP-Hard
problem, in this paper, we will demonstrate a heuristic-based but
practical algorithm to optimize it in a step-by-step greedy fashion.

min
m

∑
i=1

E(Ri,Θ
s
i ) subj. to Ks(

m⋂
i=1

G(Si,θ
s
i )) increases 10%,

(10)
where Ks indicates the area value at the s-th step with respect to
transformation coefficients Θs

i and θ s
i . The iteration would stop if

the optimization cannot further increase the area of the mutual space.

Generation : 5

Generation : 12

Generation : 21

Generation : 32

Figure 4: Mutual Spatial boundaries (blue) for different generations of
the search mechanism. The green area indicates standable spaces
and the red area indicates non-standable spaces. The result shows
that the optimized mutual standable space increases over generations.



Figure 5: Furniture optimization and manipulation. In each step, a 10% increase of mutual space area (K) is determined, while minimizing the
overall effort needed (E) for the required transformation (G).



4 IMPLEMENTATION ON A 3D SCANNED DATASET

To comprehensively observe how the search and recommendation
system performs given various rooms types with different spatial
organizations, we take advantage of available 3D datasets to be able
to experiment with large quantities of real-world case studies. We
use the Matterport 3D [13] dataset and randomly sample subsets
of varying sizes of 3D scanned scenes, and perform the search and
recommendation practice on each subset to observe how the mutual
spaces are identified and maximized with our algorithm. Matterport
3D is a large-scale RGB-D dataset containing 90 building-scale
scenes. The dataset consists of various building types with diverse
architecture styles, each including numerous spatial functionalities
and furniture layouts. Annotations of building elements and furni-
ture are provided with surface reconstructions as well as 2D and
3D semantic segmentation. For our experiments, we initially ex-
clude spaces that are not generally used for multi-user interaction
(bathroom, small corridors, stairs, closet, etc.). Furthermore, we ran-
domly group the available rooms in groups of 2, 3, and 4. We utilize
the object category labels provided in the dataset as the ground truth
for our semantic labeling purposes.

We implement our framework using the Rhinoceros3D (R3D)
software and its development libraries. For each room, we convert
the labeling data structure provided by the dataset to our proposed
topological scene graph. This provides the system with bounding
boxes for each object and the topological constraints for their poten-
tial rearrangement. Using such a structure, we are able to extract the
standable and sittable spaces for each room based on our proposed
methodology. Figure 3 illustrates the available standable and sittable
boundaries for two sample rooms processed by our system. We
define a constant εOi,k = 70 cm for all sittable objects.

Next, we integrate our algorithm with a robust Strength Pareto
Evolutionary Algorithm 2 (SPEA 2) [77] available through the Oc-
topus multi-objective optimization tool in R3D. The fitness function
(6) is used to maximize the mutual space for calculated standable
spaces. Our genotype is comprised of the transformation parameters
G(F,θ) of each room, allowing free movement and orientation to
achieve maximum spatial consensus. Therefore, a total of 3(n−1)
genes are allocated for the search process. This process would result
in the shape, position and orientation of the maximum mutual bound-
ary of the assigned rooms. We use a population size of 100, mutation
probability of 10%, mutation rate of 50% and crossover rate of 80%
for our search. As our solution integrates a genetic search, we expect
the result to gradually converge to the global optimum. Figure 5
shows how the mutual space boundary is progressively expanded
with increase of the generations in our search.

Expanding further, we extend our search by manipulating the
scene with alternative furniture arrangements. As the objective
goal is to achieve an increased mutual spatial boundary area with
minimum effort, we calculate the E based on the transformation
parameters assigned to each object present in the room. However, in
our current implementation, the genetic algorithm integrated in our
solution is not capable of adapting dynamic genotype values, and
therefore cannot update the topological values of each object (δXmax,
δXmin, δYmax, δYmin) during the search process. Hence, to avoid
transformations which result in physical conflicts of manipulated
furniture, we penalize phenotypes that contain intersecting furniture
within the scene. This penalty is added to the E value, lowering the
probability of such phenotypes to be selected or survive throughout
the genetic generations.

The optimization can either be (i) triggered in separate attempts
for each step (s), where the mutual area value (K) is constrained
based on the resulting step value, or (ii) executed in a single attempt
where minimizing E and maximizing K are both set as objective
functions. In the latter, MS is defined as the solution which holds
the largest K while E = 0. Executing the optimization in a one-time
event is also likely to require additional computational cost due to

the added complexity to the solution space.

5 RESULTS

Figure 5 illustrates our results for a furniture manipulation optimiza-
tion task applied to three example rooms. A total of 34 objects are
located in the rooms. To shorten our gene length we do not apply
rotation transformations to objects. We use a population size of 250,
mutation probability of 10%, mutation rate of 50% and crossover
rate of 80% for the scene manipulation search. We visualize the
standable, sittable and mutual boundaries for each spatial expansion
step. Moreover we report the corresponding E for each room in the
alternative furniture layout. Our results in this example indicate the
solution can identify solutions which increase the maximum mutual
boundary area up to 65% more than its initial state before furniture
movement.

The optimization process was able to generate a well-defined
Pareto front, as seen on the bottom of Figure 5, locating both the
two extreme points and numerous intermediate trade-off points rep-
resenting non-dominated solutions. The bottom region of the curve
is flat, indicating that for a similar amount of effort, a significant
increase in mutual standable area can be achieved. The trade-off
frontier thus starts at point MS, becoming very densely populated
in its initial soft slope. This shows that for each modest increase in
physical effort (that is, in moving furniture) there can be extensive
gains in mutual shareable area, which is an interesting result. After
s = 4, the Pareto front becomes increasingly steep, signaling that the
user would now have to significantly increase physical effort levels
for modest gains in shareable area. Point 4Gs thus seems to indicate
a breaking point of diminishing returns.

Similar to the MS search, in smaller furniture optimization steps,
the algorithm seeks solutions which are highly dependent on the
transformation parameters G(F,θ) of the room itself, whereas in
larger steps, we observe the algorithm correctly moving the objects
to the more populated side of the room in order to increase the empty
spaces in available. In rooms where objects are facing the center,
and empty areas are initially located in the middle portion of the
space, we see the objects being pushed towards the corners or outer
perimeter of the room in order increase the initial unoccupied areas.

Due to the smaller gene size, calculating the optimal MS (maxi-
mum mutual space without furniture manipulation) executes much
faster compared to E(Ri,Θ

s
i ) optimization, where the complexity of

the search mechanism radically increases due to the additional object
transformation parameters. The speed of the E(Ri,Θ

s
i ) optimization

is also highly dependent on the transformation range of each object,
meaning that objects in larger rooms have more movement options
to choose from than those in small, constrained rooms. We observe
an example of this effect in the later augmented reality experiment
(Section 6), where the smaller space (kitchen) dominates the search
process, causing the final mutual outcome between the rooms to
maintain a very similar shape to the open boundaries of the smaller
space. While such an effect would still provide a well-constrained
problem for medium-sized rooms with multiple objects (such as
the conference room), there are many possible ways of fitting the
smaller space in larger rooms with open spaces (such as the robotics
laboratory), resulting in an under-constrained optimization problem.

6 AUGMENTED REALITY VISUALIZATION

To explore the usability aspect of our solution in real-world sce-
narios, we deploy the resulting spatial segmentation in augmented
reality using the Microsoft Hololens, a mixed reality HMD. In this
experiment, three types of rooms were defined as potential tele-
communication spaces: (i) a conventional meeting room, where
a large conference table is placed in the middle of the room and
unused spaces are located around the table (ii) a robotics laboratory,
where working desks and equipment are mainly located around the



Figure 6: Screenshots from HoloLens illustrating the identified mutual boundaries as augmented overlays for three rooms: A) kitchen; B)
conference room; C) robotic laboratory. Blue color indicates mutual boundaries, green color indicates standable spaces and red color indicates
non-standable spaces.

perimeter of the room, while some larger equipment and a few ta-
bles are disorderly positioned around the central section of the lab
(iii) a kitchen space, where surrounding appliances and cabinets are
present in the scene.

After the initial scan of the surrounding environment by the user
of each room, the geometrical mesh data is sent to a central server for
processing. This process happens in an offline manner, as the current
Hololens hardware is incapable of processing the computations that
our solution would require. In addition, we scan the space using
a Matterport camera, and perform the semantic segmentation step
using Matterport classifications to locate the bounding boxes of all
the furniture located in the room. We then feed the bounding box data
to our algorithm for mutual boundary search. The implementation
outputs spatial coordinates for standable and sittable areas which are
automatically updated in the Unity Game Engine to be rendered in
the Hololenses.

Figure 6 shows how the spatial boundary properties are visualized
within the Hololens AR experience. The red spaces indicate non
standable objects, the green spaces indicate standable boundaries,
and the blue spaces indicate mutual boundaries that are accessible
between all users. The visualized boundaries are positioned slightly
above the floor level, allowing users to identify the mutual accessible
ground between their local surrounding and the remote participant’s
spatial constraints.

Visualizing the mutual ground within the space itself using
HoloLens allows us to understand how complex the problem can
be when executed in a manual fashion. Some corner spaces that are
not typically used as default social areas of an certain room, may
become the only required common ground for interaction with other
rooms. Overcoming this spatial bias is easily executed within the
algorithm; meanwhile, this may not happen so easily and instantly
when individuals are left to deal with it on their own.

However, due to the limited field of view of the HoloLens, detect-
ing non-physical boundaries placed at a lower visual height becomes
difficult to follow. This issue proved more challenging when walking
closer to the non-orthogonal edges of mutual bounding area, where
an individual could easily step outside the designated area. The
shareable area also included a number of voids, which resulted on an
inconsistent walking path inside the standable spaces. Moreover, the
accuracy of the real-time mesh reconstruction in HoloLens played
a critical role in calculating the required rendering occlusions for
the visualized boundaries. This was mainly because the position
of the the visualization was reflected close to the floor with many
object placed over it, therefore failing to detect occluding objects, a
fact that often misled the user in identifying whether the space was
mutually accessible or not.

7 CONCLUSIONS

We introduce a novel optimization and manipulation framework
to generate an optimal common virtual space for interactions that
mostly involve standing and sitting. Our framework further recom-
mends movement of surrounding furniture objects that can expand
the size of the mutual space with minimal physical effort. We inte-
grated our framework with a Strength Pareto Evolutionary Algorithm
for an efficient search and optimization process. The multicriteria
optimization process was able to generate a well-defined Pareto
front of trade-offs between maximizing mutual space and minimiz-
ing physical effort. The Pareto front is more densely populated in
some sections of the frontier than others, clearly identifying the best
trade-offs region and the on-start of diminishing returns.

Furthermore, we experimented how the output solutions can be
visualized using a HoloLens application. Results show that the pro-
posed framework can effectively discover optimal shareable space
for multi-user virtual interaction and thus provides better user expe-
rience compared to manually labeling shareable space, which would
be a labor-intensive and imprecise workflow. In such context, if all
participants stand within the calculated mutual spatial boundaries,
the line of sight between all participants will be deterministic. In
addition, no remote participant will be positioned in a conflicting lo-
cation for any local user and would comply to the spatial constraints
for all other participants.

There are, of course, limitations to the work. First, furniture
with fixed positions are not automatically detected in our current
implementation. We believe such feature can be integrated with
further improvements in semantic segmentation methodologies, or
can be optionally specified by the user whether an object is fixed or
not. In addition, the furniture weight is calculated based on standard
assumptions. We envision that with the growth of spatial computing
procedures, such meta-data of the surrounding environment will be
customizable by the user itself and can be loaded upon each mutual
spatial search execution. Future work can comprise of integrating
robust floorplanning representations with the current search mecha-
nism to minimize computation cost and complexity. Lastly, usability
studies can be conducted on how to improve the visualization strate-
gies so participants can experience the required tele-communication
functionalities while preserving the mutual spatial ground.
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